SARS-CoV-2およびCOVID-19の人から人への感染を防ぐための物理的距離、フェイスマスクおよび目の保護

論文タイトル

Derek K Chu, MD Prof Elie A Akl, MD Stephanie Duda, MSc Karla Solo, MSc Sally Yaacoub, MPH Prof Holger J Schünemann, MD et al.

Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

THE LANCET June 01, 2020 DOI:https://doi.org/10.1016/S0140-6736(20)31142-9

注意

論文→Shaperで原文を整える→DeepLに翻訳させる
この作業だけをして、翻訳を載せています。そのため、ニュアンスがおかしい翻訳になることがあります(体感的にはDeepL翻訳の精度は高いのでチンプンカンプンな文章になることは少ないと思っています)。

アブストラクト(抄録)

■目次

背景

重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)は,COVID-19を引き起こし,密接な接触を介して人から人へと感染する.我々は、ヘルスケアおよび非ヘルスケア(コミュニティなど)環境におけるウイルス感染に対する物理的距離、フェイスマスク、および目の保護の効果を調査することを目的とした。

方法

我々はシステマティックレビューおよびメタ解析を行い、人から人へのウイルス感染を回避するための最適な距離を調査し、ウイルス感染を防止するためのフェイスマスクおよび目の保護具の使用を評価した。SARS-CoV-2 と重症急性呼吸器症候群の原因となるベータコロナウイルス、および中東呼吸器症候群に関するデータを、WHO 固有の標準情報源および COVID-19 固有の情報源 21 箇所から取得した。データベース開始から2020年5月3日までの間に、これらのデータソースを言語による制限なく、比較研究、および受容性、実現可能性、資源利用、衡平性の文脈的要因を求めて検索した。記録をスクリーニングし、データを抽出し、重複した場合のバイアスのリスクを評価した。我々は、フリークエンティストメタアナリシスおよびベイズメタアナリシス、ランダム効果メタ回帰を行った。コクラン法およびGRADEアプローチに従ってエビデンスの確実性を評価した。本研究はPROSPERO、CRD42020177047に登録されている。

発見

我々の検索では、16 カ国と 6 大陸にまたがる 172 件の観察研究が同定されたが、ランダム化比較試験は実施されておらず、44 件の関連する比較研究が医療現場と非医療現場で実施された(n=25 697 人の患者)。
ウイルスの感染は、物理的距離が1m以上の場合、1m未満の場合と比較して低かった(n=10 736人、プール調整オッズ比[aOR] 0.18、95%CI 0.09~0.38;リスク差[RD] -10.2%、95%CI -11.5~-7.5;中程度の確実性);保護は距離が長くなるにつれて増加した(相対リスクの変化[RR] 2.02/m;相互作用=0.041;中程度の確実性)。
フェイスマスクの使用は感染リスクの大幅な減少につながる可能性がある(n=2647;aOR 0.15、95%CI 0.07~0.34、RD -14.3%、-15.9~-10.7;低確度)、N95または類似の人工呼吸器との関連は、使い捨ての手術用マスクまたは類似のものと比較してより強くなった(例えば、再使用可能な12~16層の綿マスク;相互作用=0.090;事後確率>95%、低確度)。
眼の保護もまた、感染の減少と関連していた(n=3713;aOR 0.22、95%CI 0.12~0.39、RD -10.6%、95%CI -12.5~-7.7;確実性は低い)。未調整の研究とサブグループ解析および感度解析では、同様の知見が得られた。

解釈

このシステマティックレビューとメタアナリシスの知見は、1m以上の物理的距離を支持し、政策に情報を提供するためのモデルと接触追跡のための定量的な推定値を提供している。公共の場や医療の場でのフェイスマスク、人工呼吸器、目の保護具の最適な使用は、これらの知見と文脈的な要因に基づいて情報提供されるべきである。これらの介入に関するエビデンスをより良く伝えるためには、堅牢な無作為化試験が必要であるが、現在利用可能な最善のエビデンスを体系的に評価することで、暫定的なガイダンスが得られる可能性がある。

Funding

World Health Organization.


References

  1. orldometer. COVID-19 coronavirus pandemic. 2020.
    https://www. worldometers.info/coronavirus/ (accessed May 28, 2020).
  2. Guo ZD, Wang ZY, Zhang SF, et al.
    Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020.
    Emerg Infect Dis 2020; published online April 10. DOI:10.3201/eid2607.200885.
  3. Chia PY, Coleman KK, Tan YK, et al.
    Detection of air and surface contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hospital rooms of infected patients.
    medRxiv 2020; published online April 9. DOI:10.1101/2020.03.29.20046557 (preprint).
  4. Santarpia JL, Rivera DN, Herrera V, et al.
    Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center. medRxiv 2020; published online March 26. DOI:10.1101/2020.03.23.20039446 (preprint).
  5. Cheng V, Wong S-C, Chen J, et al.
    Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong.
    Infect Control Hosp Epidemiol 2020; 41: 493–98.
  6. Wong SCY, Kwong RT-S, Wu TC, et al.
    Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong.
    J Hosp Infect 2020; 105: 119–27.
  7. Faridi S, Niazi S, Sadeghi K, et al.
    A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran.
    Sci Total Environ 2020; 725: 138401.
  8. Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020; 323: 1610–12.
  9. Qualls N, Levitt A, Kanade N, et al. Community mitigation guidelines to prevent pandemic influenza: United States, 2017. MMWR Recomm Rep 2017; 66: 1–34.
  10. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med 2020; 8: 434–36.
  11. MacIntyre R, Chughtai A, Tham CD, Seale H. COVID-19: should cloth masks be used by healthcare workers as a last resort? April 9, 2020. https://blogs.bmj.com/bmj/2020/04/09/covid-19should-cloth-masks-be-used-by-healthcare-workers-as-a-last-resort/ (accessed May 12, 2020).
  12. Loeb M, Dafoe N, Mahony J, et al. Surgical mask vs N95 respirator for preventing influenza among health care workers: a randomized trial. JAMA 2009; 302: 1865–71.
  13. Bartoszko JJ, Farooqi MAM, Alhazzani W, Loeb M. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: a systematic review and meta-analysis of randomized trials. Influenza Other Respir Viruses 2020; published online April 4. DOI:10.1111/irv.12745.
  14. Schünemann HJ, Moja L. Reviews: rapid! Rapid! Rapid! . . . and systematic. Syst Rev 2015; 4: 4.
  15. Cochrane Training. Cochrane handbook for systematic reviews of interventions, version 6. 2019. https://training.cochrane.org/ handbook/current (accessed May 12, 2020).
  16. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924–26.
  17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–12.
  18. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 2000; 283: 2008–12.
  19. Jefferson T, Del Mar CB, Dooley L, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2011; 7: CD006207.
  20. Offeddu V, Yung CF, Low MSF, Tam CC. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and meta-analysis. Clin Infect Dis 2017; 65: 1934–42.
  21. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines, 7: rating the quality of evidence—inconsistency. J Clin Epidemiol 2011; 64: 1294–302.
  22. Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 2015; 350: h870.
  23. Moskalewicz A, Oremus M. No clear choice between NewcastleOttawa Scale and Appraisal Tool for Cross-Sectional Studies to assess methodological quality in cross-sectional studies of health-related quality of life and breast cancer. J Clin Epidemiol 2020; 120: 94–103.
  24. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2019. http://www.ohri.ca/programs/clinical_ epidemiology/oxford.asp (accessed May 12, 2020).
  25. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898.
  26. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines, 1: introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011; 64: 383–94.
  27. Guyatt GH, Thorlund K, Oxman AD, et al. GRADE guidelines, 13: preparing summary of findings tables and evidence profiles— continuous outcomes. J Clin Epidemiol 2013; 66: 173–83.
  28. Santesso N, Carrasco-Labra A, Langendam M, et al. Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments. J Clin Epidemiol 2016; 74: 28–39.
  29. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines, 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 2020; 119: 126–35.
  30. Higgins JP, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med 2004; 23: 1663–82.
  31. Jefferson T, Jones M, Al Ansari LA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses, part 1: face masks, eye protection and person distancing—systematic review and meta-analysis. medRxiv 2020; published online April 7. DOI:10.1101/2020.03.30.20047217 (preprint).
  32. Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001; 10: 277–303.
  33. Goligher EC, Tomlinson G, Hajage D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA 2018; 320: 2251–59.
  34. Alraddadi BM, Al-Salmi HS, Jacobs-Slifka K, et al. Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel. Emerg Infect Dis 2016; 22: 1915–20.
  35. Arwady MA, Alraddadi B, Basler C, et al. Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014. Emerg Infect Dis 2016; 22: 1395–402.
  36. Bai Y, Wang X, Huang Q, et al. SARS-CoV-2 infection in health care workers: a retrospective analysis and a model study. medRxiv 2020; published online April 1. DOI:10.1101/2020.03.29.20047159 (preprint).
  37. Burke RM, Balter S, Barnes E, et al. Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States. medRxiv 2020; published online May 3. DOI:10.1101/2020.04.27.20081901 (preprint).
  38. Caputo KM, Byrick R, Chapman MG, Orser BJ, Orser BA. Intubation of SARS patients: infection and perspectives of healthcare workers. Can J Anaesth 2006; 53: 122–29.
  39. Chen WQ, Ling WH, Lu CY, et al. Which preventive measures might protect health care workers from SARS? BMC Public Health 2009; 9: 81.
  40. Cheng H-Y, Jian S-W, Liu D-P, Ng T-C, Huang W-T, Lin H-H. High transmissibility of COVID-19 near symptom onset. medRxiv 2020; published online March 19. DOI:10.1101/2020.03.18.20034561 (preprint).
  41. Wang X, Pan Z, Cheng Z. Association between 2019-nCoV transmission and N95 respirator use. J Hosp Infect 2020; 105: 104–05.
  42. Ha LD, Bloom SA, Hien NQ, et al. Lack of SARS transmission among public hospital workers, Vietnam. Emerg Infect Dis 2004; 10: 265–68.
  43. Hall AJ, Tokars JI, Badreddine SA, et al. Health care worker contact with MERS patient, Saudi Arabia. Emerg Infect Dis 2014; 20: 2148–51.
  44. Heinzerling A, Stuckey MJ, Scheuer T, et al. Transmission of COVID-19 to health care personnel during exposures to a hospitalized patient: Solano County, California, February 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 472–76.
  45. Ho KY, Singh KS, Habib AG, et al. Mild illness associated with severe acute respiratory syndrome coronavirus infection: lessons from a prospective seroepidemiologic study of health-care workers in a teaching hospital in Singapore. J Infect Dis 2004; 189: 642–47.
  46. Van Kerkhove MD, Alaswad S, Assiri A, et al. Transmissibility of MERS-CoV infection in closed setting, Riyadh, Saudi Arabia, 2015. Emerg Infect Dis J 2019; 25: 1802–09.
  47. Ki HK, Han SK, Son JS, Park SO. Risk of transmission via medical employees and importance of routine infection-prevention policy in a nosocomial outbreak of Middle East respiratory syndrome (MERS): a descriptive analysis from a tertiary care hospital in South Korea. BMC Pulm Med 2019; 19: 190.
  48. Kim T, Jung J, Kim SM, et al. Transmission among healthcare worker contacts with a Middle East respiratory syndrome patient in a single Korean centre. Clin Microbiol Infect 2016; 22: e11–13.
  49. Kim CJ, Choi WS, Jung Y, et al. Surveillance of the Middle East respiratory syndrome (MERS) coronavirus (CoV) infection in healthcare workers after contact with confirmed MERS patients: incidence and risk factors of MERS-CoV seropositivity. Clin Microbiol Infect 2016; 22: 880–86.
  50. Lau JTF, Lau M, Kim JH, Tsui HY, Tsang T, Wong TW. Probable secondary infections in households of SARS patients in Hong Kong. Emerg Infect Dis 2004; 10: 235–43.
  51. Liu W, Tang F, Fang LQ, et al. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study. Trop Med Int Health 2009; 14 (suppl 1): 52–59.
  52. Liu ZQ, Ye Y, Zhang H, Guohong X, Yang J, Wang JL. Analysis of the spatio-temporal characteristics and transmission path of COVID-19 cluster cases in Zhuhai. Trop Geogr 2020; published online March 12. DOI:10.13284/j.cnki.rddl.003228.
  53. Loeb M, McGeer A, Henry B, et al. SARS among critical care nurses, Toronto. Emerg Infect Dis 2004; 10: 251–55.
  54. Ma HJ, Wang HW, Fang LQ, et al. A case-control study on the risk factors of severe acute respiratory syndromes among health care workers. Zhonghua Liu Xing Bing Xue Za Zhi 2004; 25: 741–44 (in Chinese).
  55. Nishiura H, Kuratsuji T, Quy T, et al. Rapid awareness and transmission of severe acute respiratory syndrome in Hanoi French Hospital, Vietnam. Am J Trop Med Hyg 2005; 73: 17–25.
  56. Nishiyama A, Wakasugi N, Kirikae T, et al. Risk factors for SARS infection within hospitals in Hanoi, Vietnam. Jpn J Infect Dis 2008; 61: 388–90.
  57. Olsen SJ, Chang HL, Cheung TY, et al. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med 2003; 349: 2416–22.
  58. Park BJ, Peck AJ, Kuehnert MJ, et al. Lack of SARS transmission among healthcare workers, United States. Emerg Infect Dis 2004; 10: 244–48.
  59. Park JY, Kim BJ, Chung KH, Hwang YI. Factors associated with transmission of Middle East respiratory syndrome among Korean healthcare workers: infection control via extended healthcare contact management in a secondary outbreak hospital. Respirology 2016; 21 (suppl 3): 89 (abstr APSR6-0642).
  60. Peck AJ, Newbern EC, Feikin DR, et al. Lack of SARS transmission and U.S. SARS case-patient. Emerg Infect Dis 2004; 10: 217–24.
  61. Pei LY, Gao ZC, Yang Z, et al. Investigation of the influencing factors on severe acute respiratory syndrome among health care workers. Beijing Da Xue Xue Bao Yi Xue Ban 2006; 38: 271–75.
  62. Rea E, Laflèche J, Stalker S, et al. Duration and distance of exposure are important predictors of transmission among community contacts of Ontario SARS cases. Epidemiol Infect 2007; 135: 914–21.
  63. Reuss A, Litterst A, Drosten C, et al. Contact investigation for imported case of Middle East respiratory syndrome, Germany. Emerg Infect Dis 2014; 20: 620–25.
  64. Reynolds MG, Anh BH, Thu VH, et al. Factors associated with nosocomial SARS-CoV transmission among healthcare workers in Hanoi, Vietnam, 2003. BMC Public Health 2006; 6: 207.
  65. Ryu B, Cho SI, Oh MD, et al. Seroprevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in public health workers responding to a MERS outbreak in Seoul, Republic of Korea, in 2015. Western Pac Surveill Response J 2019; 10: 46–48.
  66. Scales DC, Green K, Chan AK, et al. Illness in intensive care staff after brief exposure to severe acute respiratory syndrome. Emerg Infect Dis 2003; 9: 1205–10.
  67. Seto WH, Tsang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003; 361: 1519–20.
  68. Teleman MD, Boudville IC, Heng BH, Zhu D, Leo YS. Factors associated with transmission of severe acute respiratory syndrome among health-care workers in Singapore. Epidemiol Infect 2004; 132: 797–803.
  69. Tuan PA, Horby P, Dinh PN, et al. SARS transmission in Vietnam outside of the health-care setting. Epidemiol Infect 2007; 135: 392–401.
  70. Wang Q, Huang X, Bai Y, et al. Epidemiological characteristics of COVID-19 in medical staff members of neurosurgery departments in Hubei province: a multicentre descriptive study. medRxiv 2020; published online April 24. DOI:10.1101/2020.04.20.20064899 (preprint).
  71. Wiboonchutikul S, Manosuthi W, Likanonsakul S, et al. Lack of transmission among healthcare workers in contact with a case of Middle East respiratory syndrome coronavirus infection in Thailand. Antimicrob Resist Infect Control 2016; 5: 21.
  72. Wilder-Smith A, Teleman MD, Heng BH, Earnest A, Ling AE, Leo YS. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore. Emerg Infect Dis 2005; 11: 1142–45.
  73. Wong TW, Lee CK, Tam W, et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg Infect Dis 2004; 10: 269–76.
  74. Wu J, Xu F, Zhou W, et al. Risk factors for SARS among persons without known contact with SARS patients, Beijing, China. Emerg Infect Dis 2004; 10: 210–16.
  75. Yin WW, Gao LD, Lin WS, et al. Effectiveness of personal protective measures in prevention of nosocomial transmission of severe acute respiratory syndrome. Zhonghua Liu Xing Bing Xue Za Zhi 2004; 25: 18–22.
  76. Yu ITS, Wong TW, Chiu YL, Lee N, Li Y. Temporal-spatial analysis of severe acute respiratory syndrome among hospital inpatients. Clin Infect Dis 2005; 40: 1237–43.
  77. Yu IT, Xie ZH, Tsoi KK, et al. Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? Clin Infect Dis 2007; 44: 1017–25.
  78. Verbeek JH, Rajamaki B, Ijaz S, et al. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2019; 7: CD011621.
  79. MacIntyre CR, Wang Q, Seale H, et al. A randomized clinical trial of three options for N95 respirators and medical masks in health workers. Am J Respir Crit Care Med 2013; 187: 960–66.
  80. Campbell A. Chapter eight: it’s not about the mask: SARS Commission final report, volume 3. December, 2006. http://www. archives.gov.on.ca/en/e_records/sars/report/v3-pdf/Vol3Chp8.pdf (accessed May 12, 2020).
  81. Webster P. Ontario issues final SARS Commission report. Lancet 2007; 369: 264.
  82. Rimmer A. COVID-19: experts question guidance to reuse PPE. BMJ 2020; 369: m1577.
  83. Mackenzie D. Reuse of N95 masks. Engineering 2020; published online April 13. DOI:10.1016/j.eng.2020.04.003.
  84. Greenhalgh T, Schmid MB, Czypionka T, Bassler D, Gruer L. Face masks for the public during the covid-19 crisis. BMJ 2020; 369: m1435.
  85. Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR. Airborne or droplet precautions for health workers treating coronavirus disease 2019? J Infect Dis 2020; published online April 16. DOI:10.1093/infdis/jiaa189.
  86. Schünemann HJ, Khabsa J, Solo K, et al. Ventilation techniques and risk for transmission of coronavirus disease, including COVID-19: a living systematic review of multiple streams of evidence. Ann Intern Med 2020; published online May 22. DOI:10.7326/M20-2306.
  87. Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med 2020; 26: 676–80.

感想

物理的に距離を取ることが非常に大きな意味を持つことを示唆している論文。

日本は何で欧米よりも被害が少なかったのか?という疑問に、個人的には”日本人は個人間の距離がそもそも遠めだからじゃないかなぁ?”と思いました。少なくともこの結果を見る限りでは。

最後にオススメ書籍の紹介

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください